
Why X Is Not Our Ideal Window System

Hania Gajewska
Mark S. Manasse

DEC Systems Research Center

130 Lytton Ave. Palo Alto, CA 94301

Joel McCormack
DEC Western Research Laboratory

100 Hamilton Ave. Palo Alto, CA 94301

Abstract

Extensive experience with X11 has convinced us that it represents a true advance in window
systems, but that there are areas in which the X protocol is seriously deficient. The problems we
describe fall into seven categories: coordinate system pitfalls, unavoidable race conditions,
incomplete support for window managers, insufficient window viewability information, difficulties
with interactive mouse-tracking, pop-up and redisplay inefficiencies, and exceptional condition
handling. We propose solutions for most of these problems. Some solutions could be easily
incorporated into the X11 protocol. Other proposals are too incompatible to be adopted, but are
nonetheless included for the benefit of future window system designers.

1. Introduction
We come to praise X, not to bury it. Our combined experience with X11 encompasses the

design and implementation of several window managers, the design and implementation of the
Xtk toolkit intrinsics, ports of the X server, and protocol converters between X and other
windowing systems.

This experience has convinced us that X represents an advance in window systems: it is
network-transparent, it runs on a wide variety of graphics hardware, and it provides an efficient
connection to the capabilities of the underlying hardware. The same experience has also
convinced us that X is not a perfect window system. In this paper we limit ourselves to specific
problems with the X11 protocol [7]; we do not complain about the philosophy or imaging model
underlying X, nor do we bemoan the fact that X is not NeWS [3], NeXTstep [9], PostScript [1], or
PHIGS [6].

The problems we have encountered fall into seven categories:
1. The mixing of signed and unsigned coordinates causes problems both in the

protocol, where 3/4 of the coordinate space is often unrepresentable, and in the C
language bindings.

2. The X protocol is asynchronous for efficiency: in general, neither the server nor
clients wait for replies. But the protocol’s synchronization mechanisms are
insufficient, and leave many unavoidable race conditions.

3. The X protocol attempts to be policy-free and tries not to dictate any particular style
of window management. However, some desirable window manager features
cannot be implemented correctly, because there are window attributes which the
window manager can neither fetch nor monitor.

4. The X protocol provides visibility notification events so that clients can avoid
computation of obscured window contents. However, this notification doesn’t work
well for nested windows or for windows with backing store.

5. None of the several ways that an application can implement interactive mouse
tracking of crosshairs, bounding boxes, etc., allow both efficiency and correctness.

6. Popping up menus and dialog boxes is slow because it requires too many round
trips and generates too many events. Repainting when portions of a window
become visible is often slow.

7. Exceptional conditions are poorly handled. Faulty programs can freeze the server,
and clients cannot kill queued requests if the user doesn’t want to wait for the
server to finish servicing them.

Although we define some X-specific vocabulary, we recommend keeping handy a glossary of X
terms, such as the one in Reference [7], while reading this paper.

2. Coordinate Representation
There are three problems in X11’s definition of coordinates: positions and sizes have different

physical representations, window borders introduce inconsistent views of a window’s coordinate
system, and the restriction that window sizes must be positive leads to unnecessary special
cases.

2.1. Signed positions vs. unsigned dimensions
The X11 protocol defines x and y coordinates as 16-bit signed integers, and width and height

dimensions as 16-bit unsigned integers. A window, or any other rectangle, is defined by the
signed position of its north-west corner and the unsigned dimensions of its width and height. This
makes sense intuitively: the coordinates of the north-west corner of a window may be beyond the
boundaries of its parent window and thus negative, while width and height are generally thought
of as nonnegative values.

However, using all 16 bits to create a very tall window is pointless, because many positions in
the window cannot be addressed using signed 16-bit values. For example:

• All text strings must begin in the top half of the window.

• All rectangles and subwindows must have their upper left corner in the top half of the
window.

• All lines and polygons must lie entirely within the top half of the window.

Similar restrictions apply to output to very wide windows (figure 2-1).

There are even graver problems with input. Any event that uses the signed 16-bit
representation for positions will be reported correctly only if it occurs in the top half of a tall
window. This includes ButtonPress, ButtonRelease, MotionNotify, KeyPress,
KeyRelease, EnterNotify, and LeaveNotify. The events Expose and
GraphicsExpose are an exception: since the exposed rectangle is always contained within
the window, the x and y fields are always positive, and the protocol defines these fields to be
16-bit unsigned values.

If an X server allows a client to create very large windows, the server may be forced into a

2

situation in which it either sends an event that contains incorrect information, or doesn’t deliver
the event at all. Thus we believe that the protocol implicitly disallows very large windows; it
allows only off-screen pixmaps, which do not have input events, to be large.

Usable space

0 32767

32767

65535

65535

Unusable space

Figure 2-1: The X coordinate system: definition vs. reality

The TranslateCoordinates request causes even more problems.
TranslateCoordinates converts signed x and y values relative to a source window into
signed x and y values relative to a destination window. It is easy to construct cases in which the
returned x and y values are incorrect---unless the source and destination window have the same
origin relative to the root window, there is always a range of values which cannot be translated
correctly.

Even if we assume that the given x and y values are contained within the source window, or
that the returned x and y values are contained within the destination window, we can still
construct problematical cases. In order to guarantee that returned values fit into a 16-bit signed
number under these assumptions, all windows must be entirely contained within the signed 16-bit
coordinate space of the root window.

Though we are critiquing the X protocol itself, and not particular language bindings, we next
show that the choice of unsigned int to represent dimensions in the Xtk toolkit [4] and
Xlib [7] interacts poorly with C language semantics.

Consider a window manager that wants to constrain windows to have at least one pixel on the
screen. Checking that the east edge of the window isn’t to the west of the screen seems easy:

w.x + w.width > 0

This doesn’t work for two reasons; here we consider C’s arithmetic semantics, and defer the
second problem to the discussion of window borders. C defines arithmetic operations that
include an unsigned operand to have an unsigned result. Since a window’s width is an unsigned
value, the test above succeeds unless the sum is exactly 0. This type of mistake has surfaced
repeatedly, both in applications and in the sample server implementation.

3

Recommendation: Width and height should be defined as either 15-bit unsigned values, or
better, as 16-bit signed integers with negative values treated as errors. In the C Xlib and Xtk
bindings, width and height should be signed to match C arithmetic semantics. In languages with
subrange types, their type should be defined as the range 0..32767. The protocol should also
explicitly restrict all windows to be contained within the 16-bit signed coordinate space of the root
window.

2.2. Window coordinates and borders
Rewriting the example above as

(int)(w.x + w.width) > 0

is still incorrect. The protocol’s definition of a window’s position is inconsistent with the window’s
dimensions. The x and y coordinates of a window specify the position of the outer north-west
corner in the window’s parent, while the height and width specify the window’s inner dimension.
The space between is occupied by the window’s border.

Thus, the correct way to assure that some part of the interior of a window w isn’t to the west of
the screen:

(int)(w.x + w.border_width + w.width) > 0

Defining x and y as the coordinates of the outer corner has led to many bugs in server
implementations and in clients, because it is inconsistent with width and height being inner
dimensions, and because it means that the coordinates (0,0) inside a window describe a point
different from the coordinates of the north-west corner of the window in the window’s parent. On
the other hand, we suspect that defining x and y as the inner corner would lead to an equivalent
number of bugs in other places.

Confusion seems unavoidable, since the protocol describes two views of the window with one
set of coordinates. The external view of the window includes the border: its natural origin is the
outer north-west corner, and its natural size is the inner width and height plus twice the border
width. The internal view of the window omits the border: its natural origin is the inner north-west
corner, and its natural size is the inner width and height. These two views are compressed into
the five numbers x, y, width, height, and border width. No matter how these numbers are
assigned, one or both views of the window will be awkward to deal with.

The real problem lies at a more fundamental level. The holdover of borders from the X10
protocol is a mistake. Borders cause complications in the protocol, servers, and clients, but don’t
provide enough payback to justify their existence. Many windows don’t use borders at all.
Windows that use borders to highlight could paint bordering rectangles explicitly. Applications
that carefully align the position of subwindows to use their borders as separators could just as
easily leave small gaps between the windows to let a background color shine through. Those few
windows that need borders can be embedded inside container windows. This would be more
efficient if the window gravity of the embedded window could be set so that the simulated border
size is preserved when the parent is resized.

Recommendation: We can’t justify removing borders from the X protocol, given the large
number of clients that would need modification. However, future window systems should let
clients deal with window borders. Programmers using X11 should take care when performing

4

geometry computations.

2.3. Window sizes must be positive
Although 0 is a natural lower bound for dimensions, it is not the one that the X11 protocol

adopts: specifying 0 for the width or height of a window generates an error. Because parent
windows must be created before child windows, 0 is the natural dimension value when a parent’s
size depends on the number and sizes of its children. Instead, some meaningless numbers must
be supplied for width and height. Further, the parent’s size cannot just drop to 0 when its children
go away; instead, an application must make removing the last child a special case by unmapping
the parent and remembering that the parent’s current size does not reflect the contents.

Applications try to create windows with a 0 width or height so often that the Xtk toolkit
specifically checks for this case before creating a window, in order to return an understandable
error message.

Recommendation: Permitted widths and heights of windows should include 0.

3. Race Conditions
Non-distributed window systems use simple synchronization mechanisms between user,

graphics display, and application. For example, a Macintosh application polls for user events,
and paints using synchronous procedure calls [2]. This simple style makes it natural for
applications to delay polling for events until the screen is in a known, consistent state.

The X protocol must work well even when the server and its clients are running on different
machines. Round-trip times to send a message to the server and get a reply may take hundreds
of milliseconds, so synchronous painting and event polling are infeasible. X11 therefore defines
an asynchronous protocol: a client sends a stream of painting and window management requests
to the server, while the server sends a stream of events back to the client. Ordinarily, the two
streams are not synchronized with each other. Although the server processes requests from a
single client in order, in general no order is defined for interleaving requests from different

1clients.

The protocol defines no particular window management scheme, but provides hooks so that a
window manager, which is simply an X11 client program, can monitor and benignly interfere with
requests issued by more ordinary applications. Such applications must contend with the
possibility that a window manager may delay or modify some requests, while other requests will
execute immediately.

Several types of race conditions arise from the asynchronous request and event streams, and
from the window manager hooks. Sometimes things happen in the expected order, sometimes
they don’t.

In the following sections, we expose several classes of race conditions. We show how some
race conditions can be avoided using synchronous grabs, timestamps, or event notification, and

1Actually, the protocol never explicitly states that the server processes requests in the order they are sent, but we have
assurances from the designers that this is certainly intended.

5

suggest how these mechanisms can be extended to eliminate the rest of the races we describe.

Although some of the races can be avoided within the framework of the X11 protocol, doing so
is hard. Naive programmers may be unaware of the races inherent in seemingly straight-forward
programs until some change in the environment triggers a race. Our tripping over such races led
to many of the conventions comprising the Inter-Client Communication Conventions Manual [7],
commonly referred to as the ICCCM.

We make extensive use of modified Feynmann diagrams to show independent actors (server,
clients, window manager, and user) and their interactions through time. Contrary to physicists’
conventions, time flows down the page. To keep things simple, the user and server timelines are
combined---we assume that the server queues raw mouse and keyboard actions immediately.

3.1. Races within a client
The asynchronous request and event streams cause the simplest race conditions. Consider

an application that pops up a menu when the left mouse button is pressed, and performs the
action pointed to by the mouse cursor when the button is released. The following actions will take
place:

1. The user presses the mouse button.

2. The server sends a ButtonPress event to the application.

3. The application issues a MapWindow request to map the menu.

4. The server maps the menu.

5. The server sends Expose events to the application.

6. The application paints the contents of the menu.

Figure 3-1 shows what happens if the user releases the button before step 4. Since the menu
window has not yet appeared, the server sends a ButtonRelease event that contains
whatever window is below the mouse at the time. This mouse-ahead race can occur if the user is
experienced and knows how far to move the mouse to select a common operation, but the
application is running on a busy machine or over a slow network link.

Server Client

Left button down

Map menu

Left button up

Map window
No menu operation visible

Figure 3-1: Pop-up menu race

Because pressing a key or a mouse button may initiate work that should be completed before
any more user events are interpreted, the X11 protocol contains the concept of a synchronous
grab. When a synchronous grab activates, the server stops sending mouse and keyboard events

6

to the client. The server still queues the events internally, but keeps them in a raw, uninterpreted
form. In particular, the server does not compute the window in which the event took place until
the client allows it to do so by calling AllowEvents.

A client can set a grab to activate on any window, button or key, and modifier combination. In
this example, the client sets a grab to activate when the left mouse button is pressed in the
window that pops up the menu. To ensure that mouse events are processed in the proper
context, the client first maps the menu, then issues an AllowEvents request. When the server
receives the AllowEvents request, it interprets queued events using the current arrangement
of windows, and then dispatches the events. Figure 3-2 shows how a synchronous grab solves
the mouse-ahead problem.

Server Client

Left button down
(synchronous grab)

Map menu

Map window

Left button up
(queued)

Left button up
(sent)

Select menu operation

AllowEvents

Figure 3-2: A synchronous grab solves the pop-up menu race

Note that a similar race condition exists for popping up a dialog box and setting keyboard input
focus to the box. In this case the problem is type-ahead rather than mouse-ahead. The client
and server actions are:

1. The user presses the mouse button.

2. The server sends a ButtonPress event to the application.

3. The application uses MapWindow to map the dialog box.

4. The application uses SetInputFocus to set keyboard focus to the dialog box.

5. The server maps the dialog box.

6. The server sends Expose events to the application.

7. The server sets input focus to the dialog box.

8. The application paints the contents of the dialog box.

If the user types any characters before step 7, the characters are dispatched to the wrong
window. The solution is familiar---use a synchronous grab---but subtle complications arise. We
discuss window manager race conditions in more detail below, so here we just note that menus
are usually override-redirect windows, and are thus immune to window manager interactions;
dialog boxes are often normal windows, so the window manager may delay execution of the
MapWindow call. Because the protocol does not allow input focus to be set to an unmapped

7

window, the application must first wait for the server to send a MapNotify event. Only then
can it call SetInputFocus and AllowEvents. The complete solution is shown in figure 3-3.
(This solution may actually be incorrect under some window managers; other possible solutions
are described in a later section.)

Server Client

Left button down
(synchronous grab)

Map dialog box

Map window
MapNotify

Key press
(queued)

SetInputFocus
AllowEvents

Key press
(sent)

Display character

Figure 3-3: A synchronous grab solves the pop-up dialog box race

A similar intraclient race condition cannot be solved with the existing synchronous grabs.
Suppose we want to implement a Macintosh-style menu bar. Such a menu bar puts up a menu
when a mouse button is pressed in any of its subwindows. While the mouse button remains
down, the old menu goes away and a new menu appears whenever the mouse enters a different
subwindow of the menu bar.

Implementing menu bars in X is almost like implementing pop-up menus, and is subject to a
similar race condition if the user releases the mouse button before the server maps the menu. An
EnterNotify event tells the client when the mouse moves into a different subwindow of the
menu bar; this serves the same role as ButtonPress in a pop-up menu.

Setting a synchronous grab on EnterNotify events would solve the race condition, but
grabs are permitted only on key and mouse button presses. The obvious change to the protocol
is to allow EnterNotify events to activate synchronous grabs. In other situations, race
conditions arise because grabs aren’t allowed on LeaveNotify events, so the protocol should
allow these events to activate synchronous grabs as well.

Since EnterNotify and LeaveNotify events differ from ButtonPress events---for
example, multiple EnterNotify events may be generated for a single user action---event
freezing on EnterNotify and LeaveNotify must be slightly different from grabs on
ButtonPress. We’ll still refer to this event freezing as a synchronous grab in order to
emphasize the similarities.

While synchronous grabs are necessary to avoid race conditions, they may introduce
performance problems. Many implementations of menu bars avoid menu flashing to improve

8

responsiveness: if an EnterNotify event is immediately followed by a LeaveNotify event,
these implementations assume that the user is sweeping the mouse across the menu bar, and
discard both events. If each EnterNotify event causes a synchronous grab, then a
LeaveNotify event cannot occur until the pop-up window is mapped and the client calls
AllowEvents. The resulting performance degradation may outweigh the benefits of correctly
handling mouse-ahead.

We know of no solution to this problem within the spirit of the protocol. Later in this paper we
provide arguments for EnterNotify and LeaveNotify grabs that are untainted by
performance questions.

3.2. Races between two clients
More complex race conditions occur when two clients conflict over a single resource, such as

keyboard focus or the current selection. The simplest race involves unwarranted assumptions
about ownership of a unique resource. The server notifies clients when they have lost ownership
of input focus and other unique resources, but absence of such notification should be used as a
hint, not as the truth.

Consider two applications that assign keyboard focus to their respective windows whenever
the left mouse button is pressed. One application runs on a fast machine and currently owns
input focus. The other application runs on a slow machine.

The user clicks in the slow application window to give it focus, but before the slow application
transfers focus, the user clicks back in the original (and still current) focus owner, and continues
typing there. The fast application processes its click first, but since it erroneously believes that it
already owns the input focus it doesn’t bother to issue another SetInputFocus call.
Eventually the slow application processes its click and calls SetInputFocus, taking focus
away from the fast application and subverting the user’s intent. Figure 3-4 shows this race
condition.

Thus, applications should never optimize away requests for a unique resource just because
they already own it. But how do they properly retain ownership? If we change the ‘‘Ignore event’’
to ‘‘SetInputFocus’’ in figure 3-4 there are still orderings that ultimately assign input focus to
the slow application.

The X11 protocol uses timestamps to deal with inter-client race conditions. Several events
contain a timestamp, as do requests that establish ownership of a unique resource. For the
remainder of this section we use SetInputFocus as a specific example of this class of
requests.

A timestamp is ideally a monotonically increasing function. In the case of an X server, a
timestamp is a 32-bit value containing the number of milliseconds elapsed since the server was

2booted. When the user presses a key or mouse button, the current server time is attached to the
raw event.

2Timestamps wrap around about every 50 days, but are interpreted correctly as long as the time between two events
doesn’t exceed 25 days.

9

Slow clientFast client Server

Left button down
(in slow client)

Left button down
(in fast client)

Ignore event
Key press

SetInputFocus

Change focus

Key press
Display character

Display character

Figure 3-4: Input focus race between clients

When an application issues a SetInputFocus request in response to an event, it should
also supply the timestamp from the event. The server compares the timestamp in the
SetInputFocus request with the last-focus-change time, which is the timestamp from the last
successful SetInputFocus call. If the new timestamp is earlier than last-focus-change time,
the server ignores the request---the current call has already been superseded by a
SetInputFocus call issued in response to a later event. If the new timestamp is later or the

3same, the server changes input focus and updates the last-focus-change time. Timestamps
thus ensure that the ordering of user events is maintained in the corresponding allocation of
unique resources. Figure 3-5 shows how timestamps solve the input focus race between clients.

There is another race condition lurking in this example. If the user clicks in the slow
application, types a few characters, and then clicks back in the fast application, the server sends
all characters to the fast application. We already know how to solve this problem: set a
synchronous grab on the button press, and call AllowEvents after calling SetInputFocus.
Figure 3-6 shows the ultimate solution.

Using a synchronous grab exacts a performance penalty---the fast application can’t display
characters meant for it until the slow application calls AllowEvents. But the grab does
guarantee that each keystroke goes to the correct window. The X protocol does not dictate what
philosophy, if any, an application writer should adopt toward race conditions; the safest method is
often not the most efficient. Caveat implementor.

InstallColormap and UninstallColormap are susceptible to the same type of race
conditions as SetInputFocus, but these race conditions are unavoidable, because colormap
requests do not take timestamps.

3In a later section, we exploit the fact that SetInputFocus takes effect if the supplied timestamp is equal to
last-focus-change time.

10

Slow clientFast client Server

Left button down
(in slow client)

Left button down
(in fast client)

Key press

Ignore request

Key press

SetInputFocus
(with button time)

Display character

Display character

SetInputFocus
(with button time)

Change focus
(update timestamp)

Figure 3-5: Timestamps solve the input focus race

The ICCCM attempts to resolve colormap installation races by legislating conventions that
clients must adhere to. A better solution is to add the appropriate timestamps, so that application
writers can use similar mechanisms to solve similar problems. The interpretations of these
timestamps must differ slightly from that in SetInputFocus, because some servers allow
multiple colormaps to be installed simultaneously.

Recommendation: InstallColormap and UninstallColormap should take a
timestamp parameter. InstallColormap would use the timestamp to ensure that the most
recent colormaps are physically installed. UninstallColormap would use it to ensure that it
doesn’t erroneously uninstall a colormap after another client has installed it with a more recent
timestamp.

3.3. Client-side races with the window manager
Much unexpected behavior results when clients perform operations that work with no window

manager or a simple window manager, but do not work with a reparenting window manager. This
section describes race conditions nominally caused by a client program doing the wrong thing.
Since the client actions causing these race conditions are so natural, we point out protocol
changes that would make the window manager responsible for, and capable of, eliminating these
races.

X11 allows a privileged client, the window manager, to oversee and manage the behavior of
top-level client windows. Simple X11 window managers ask for notification events in order to
monitor client behavior, then react to these actions after the fact. For example, when the server

11

Slow clientFast client Server

Left button down
(in slow client)
(synchronous grab)

Left button down
(in fast client)
(queued)

Key press b
(queued)

Key press b
(send)

Display character

Display character

SetInputFocus
(with button time)

SetInputFocus
(with button time)

Change focus
(update timestamp)

Key press a
(queued)

Change focus
(update timestamp)

AllowEvents

Key press a
(send)

Left button down
(in fast client)
(send)
(synchronous grab)

AllowEvents

Figure 3-6: The ultimate input focus race solution

notifies the uwm window manager that a client has mapped its top-level window, uwm unmaps a
corresponding icon window.

Most window managers, and particularly reparenting window managers, play a more active
role. These redirecting window managers instruct the server to redirect all top-level
MapWindow, ConfigureWindow and CirculateWindow requests made by other clients.
The server doesn’t execute such a request, but sends a special redirection event to the window
manager. Since the server maintains no information about a request after redirecting it, the
window manager must assume complete responsibility for the request. It may ignore the request,
grant the request by issuing an identical request itself, or translate the request into one or more
other requests.

For example, the twm window manager decorates windows with a title bar. To do so, twm
creates a frame window big enough to hold both the client window and the title bar. It then

12

reparents the client window to be a child of the frame. twm uses redirection so that it can
translate MapWindow and ConfigureWindow requests on the client window into
MapWindow and ConfigureWindow requests on the frame window. If instead twm waited
for notification events, ConfigureWindow requests in particular would cause ugly screen
flashing before the window manager got things straightened out.

Redirection causes problems for naive clients. Imagine an application that starts painting as
soon as it maps a window. If MapWindow is not redirected, all is well. But under a redirecting
window manager, the server sends the map request to the window manager, the client starts
painting before the window manager processes the request, and the server ignores all painting
calls until the window manager finally maps the frame window. Figure 3-7 illustrates this
scenario.

Window managerClient Server

Redirect request

Map window

Draw rectangle
Reparent
Map client
Map parent

Ignore request

Map windows
Draw text

Draw text

Figure 3-7: Map window race

Clients can avoid this problem if they wait for a MapNotify event (or for Expose events)
before they begin painting, as shown in figure 3-8.

Draw rectangle

Window managerClient Server

Redirect request

Map window

Reparent
Map client
Map parent

Draw rectangle

Map windows
MapNotify

Draw text

Draw text

Figure 3-8: MapNotify solves the map window race

The solution shown in figure 3-8 may not actually solve the problem, depending on the window

13

manager involved. In fact, we have deliberately depicted the behavior of most window managers,
which introduces a low-probability race condition. These window managers map the client
window before mapping the frame window in order to improve efficiency and reduce screen
flashing. Though unlikely, the following scenario may occur:

1. The window manager sends a MapWindow request for the client window.

2. The window manager sends a MapWindow request for the frame window.

3. The server maps the client window and sends a MapNotify event to the client,
but doesn’t yet map the frame window.

4. The client receives the MapNotify event for the client, and sends painting
requests in return.

5. The server ignores several painting requests, because the window is not viewable.
It is not enough for a window to be mapped; to be viewable all of its ancestors must
be mapped as well.

6. The server finally maps the frame window.

Waiting for MapNotify is a fairly common X11 idiom, particularly for clients that set input
focus to dialog boxes. Thus, we recommend that either the protocol or the ICCCM instruct
window managers to avoid this scenario using one of two techniques. By using a background of
None in the frame window to avoid screen flash, a window manager can map the frame before
the client window; this is less efficient than the reverse order, but probably insignificantly so.
Alternatively, a window manager can grab the server, issue the two MapWindow requests, and
ungrab the server, which ensures that the server maps both windows before processing any other
requests.

If the protocol and ICCCM remain silent on this issue, clients must compensate by waiting for
some event other than MapNotify. In the example above, the client should wait for Expose.

Several other requests require that the specified window be mapped or viewable. The client
must wait for an appropriate event before issuing such requests. SetInputFocus requires the
window to be viewable; if a client pops up a dialog box and calls SetInputFocus before
receiving VisibilityNotify, the dialog box may not get focus. Similarly, GrabPointer
fails if either of its window parameters are not viewable. UnmapWindow requires that the
window already be mapped; if a client calls UnmapWindow before receiving MapNotify, the
window may remain mapped.

SetInputFocus is especially pernicious---if the window is unviewable, an X error is
generated. Since few clients contain useful error handlers, most will terminate after printing the X
error. Yet the condition that generates this error is likely to occur whenever there is a race
between the application setting the focus and the user iconifying the window---not an unlikely
occurrence. In general, it seems inadvisable to use errors to report failures due to unavoidable
races.

In order to operate correctly under a redirecting window manager, almost all clients must ask
for and wait for Expose, MapNotify, and VisibilityNotify events on their top-level
windows. The ineffectiveness of this solution is evident from the volume of bug reports related to
this issue that appear on the X mailing lists and news groups, as well as the volume of questions
from our co-workers. The real problem is that application writers expect the ordering of their

14

request stream to reach the server unaltered, but redirection violates this assumption.

These problems could be solved better by making redirection synchronous: when the server
redirects a client’s request, it suspends processing of further requests from that client.
Synchronous redirection requires adding a client identifier to all redirected requests, and adding
an AllowRequests request. When the window manager has serviced the synchronously
redirected request, it permits the server to continue processing client requests by issuing an

4AllowRequests request, supplying the client identifier contained in the redirected request.
Figure 3-9 shows how this scheme allows the natural expression of client programs.

Draw rectangle

Window managerClient Server

Redirect request
(synchronous)

Map window

Reparent
Map client
Map parent

Draw rectangle
(executed)

Map windows

Draw text

Draw text

Draw rectangle
(queued)

AllowRequests

Figure 3-9: Synchronous redirection solves the map race

Recommendation: All redirection in X should be synchronous. Synchronous redirection in the
example above greatly enhances the clarity and simplicity of client programs. For this reason
alone, we would consider it justified. But synchronous redirection is good for much more than
that. Below, we point out several more requests that should be redirectable. If the current
protocol definition of redirection is used, making these requests redirectable solves a limited (but
important) set of problems. If these requests are made synchronously redirectable, they solve a
much larger set of problems. And, as explained in the section on efficiency, several time-critical
operations can be made faster because synchronous redirection doesn’t reorder request
execution. Finally, SetInputFocus should fail silently if the window is unviewable, as it does
if the timestamp is out-of-date.

3.4. Window manager races solved with redirection
The window manager is responsible for more than shuffling windows around: it must be able to

impose a consistent style on clients that have differing ideas of how unique or limited resources
should be managed. Thus the window manager may also be an input focus manager and a

4Efficiency considerations discussed later in this paper force a slight modification to the conditions under which the
server suspends processing of events, but this doesn’t affect the basic semantics.

15

colormap manager. However, several unavoidable race conditions prevent a window manager
from imposing certain styles of management. These races are not the fault of the window
manager or the client, but are inherent in the protocol.

There are two styles of keyboard input focus in X11: focus can be explicitly attached to a
window, or it can automatically follow the mouse pointer. Attaching focus to a window is often
called click-to-type because users generally set focus by pointing at a window and clicking a
mouse button. Letting focus follow the mouse pointer is referred to as PointerRoot in the
protocol. Debates about the virtues of these two styles are as vehement and pointless as
debates about byte order.

A user may be running a mix of applications, where some explicitly set focus and others never
do. Applications that never set focus themselves depend on the window manager (or the default
PointerRoot model) for focus control. Applications that set focus explicitly may allow
keyboard input to change the focus, as when the tab key moves the focus from field to field of a
form window. These applications may also contain windows that don’t ever get focus, such as
scroll bars and push buttons.

Neither clients nor window managers have sole responsibility for setting input focus. Instead,
setting the focus is a distributed responsibility. Clients can use SetInputFocus to indicate
their focus desires. A simple window manager allows clients to fight it out, with generally poor
results. A more complex window manager monitors FocusIn and FocusOut events, and may
generate SetInputFocus calls itself, in order to provide the user’s preferred focus model.

But, as shown in figure 3-10, a window manager cannot perfectly impose PointerRoot
semantics over clients that set focus explicitly. Imagine a user running a window manager that
tries to maintain PointerRoot focus at all times. The user clicks in a window to set an
insertion point in a block of text. The application uses click-to-type, so the click also sets the input
focus to the window. The user quickly moves the mouse to another window and types some
characters, expecting the characters to go to the new window. But the window manager finds out
about the input focus change after the fact, and only then can it force the focus back to
PointerRoot. If the user is fast enough, the server sends the first few keystrokes to the
window that set focus, rather than to the window containing the mouse pointer.

This race can be solved by making SetInputFocus a redirectable request, so that the
window manager gets control before focus is actually changed. This is shown in figure 3-11.

The astute reader may notice that this solution has the potential for reintroducing a race
condition that we have previously solved. The strict PointerRoot window manager of figure
3-11 ignores all focus requests, which is okay. But a hybrid window manager might permit an
application to explicitly set focus as long as the mouse cursor is within the application’s top-level
window or any of its subwindows. This hybrid window manager resets focus to PointerRoot
only when the cursor exits the top-level window (or alternatively, enters a new top-level window).

Unfortunately the only safe thing a window manager can do with a redirected
SetInputFocus call is to ignore it. If the window manager grants a client’s
SetInputFocus request and issues a SetInputFocus call on the requested window, then
an application cannot correctly handle type-ahead. We previously solved this type-ahead race by
using synchronous grabs and AllowEvents. If SetInputFocus can be redirected, the

16

Window managerClient Server

Left button down

SetInputFocus

Change focus
FocusNotify

Move mouse to
new window

Key press

Display in click
window Change focus

Key press

Display in mouse
window

SetInputFocus to
PointerRoot

Figure 3-10: PointerRoot focus race

Window managerClient Server

Left button down

SetInputFocus

Redirect request

Move mouse to
new window

Key press

Ignore request

Display in mouse
window

Figure 3-11: Redirection solves the PointerRoot focus race

client should wait for FocusIn before calling AllowEvents. But the client cannot wait for
FocusIn, because it won’t receive such notification if the window manager doesn’t permit focus
to change, or if the window already owns the input focus.

If SetInputFocus requests were synchronously redirected, this race condition could be
avoided (figure 3-12). Synchronous redirection guarantees that a client’s requests are not
reordered. This allows the client to call SetInputFocus and AllowEvents in succession.
By the time the server executes the AllowEvents request, the window manager has dealt with
the input focus.

Finally, a hybrid window manager must be able to properly restore PointerRoot focus

17

Window managerClient Server

Left button down
(synchronous grab)

SetInputFocus

Redirect request

Key press
(queued)

Display in click
window

AllowEvents

SetInputFocus

(Queued)

AllowRequestsChange focus

Allow events

Key press
(send)

Figure 3-12: Synchronous redirection completely solves the PointerRoot focus race

either when the mouse leaves a top-level window, or when it enters a top-level window. Allowing
synchronous grabs on LeaveNotify and EnterNotify offers the simplest solution. The
window manager can install such grabs on each top-level window, and call AllowEvents after
changing focus.

Recommendation: SetInputFocus should be a redirectable request, and a corresponding
FocusRequest event should be added. For similar reasons, InstallColormap should be

5redirectable, and a ColormapRequest event should be added. Synchronous grabs (or a
similar event-freezing mechanism) should be extended to EnterNotify and LeaveNotify.

3.5. Window manager races solved with timestamps
The window managers described in the previous section strive for perfection---each user

action, no matter how transitory, is treated correctly. But redirection takes time. While this isn’t a
problem when running the window manager locally on a fast workstation, we envision possible
performance problems with X terminals where all clients, including the window manager, run
remotely.

A window manager might wish to trade perfection for speed by renouncing the use of
redirection. Such a window manager may improperly handle transient behavior, but should arrive

5Again, the ICCCM attempts to resolve this type of problem by legislating conventions that clients must adhere to. Our
proposals provide a more powerful and concise solution.

18

in the desired end state soon after the user has stopped typing and mousing around. Even this
modest goal is not achievable in X11.

Assume that a window manager wants to maintain input focus in a viewable window; if an
application unmaps the current focus window U, the window manager heuristically chooses
another window M to get focus. (The window manager keeps track of the current focus owner by
tracking FocusIn events.) Suppose that the user clicks in yet another window F to give it focus
after window U is unmapped, but before the window manager has reassigned focus to M (figure
3-13). The window manager has no way of knowing which timestamp to use in its
SetInputFocus call, so it uses CurrentTime. Input focus ends up in window M rather than
the user’s chosen window F.

Window managerClient U Server

Left button down
(in window U)

Unmap window U

Unmap window
UnmapNotify

Left button down
(in window F)

SetInputFocus
(to window F)

Change focus
(to window F)
FocusIn

Change focus
(to window M)
FocusIn

Client F

Record window F
as current focus

Record window M
as current focus

SetInputFocus
(to window M)

Figure 3-13: Unmap focus race

The window manager can avoid the race if it can use a valid timestamp in the
SetInputFocus call. But where should such a timestamp come from? Ideally, the client
would supply the timestamp from the first ButtonPress event to the UnmapWindow request,
and the server would propagate this timestamp to the window manager in the UnmapNotify
event. But in the current protocol, the UnmapWindow request doesn’t take a timestamp
parameter, nor does the UnmapNotify event contain a timestamp field. Adding timestamp
fields to the appropriate window management notification events doesn’t require recoding clients,
but adding timestamp parameters to window management requests does.

A more compatible solution is to add a timestamp field to the FocusIn event, and report

19

FocusIn whenever that timestamp changes. This timestamp should be filled with the last-
focus-change time. If an explicit SetInputFocus call changes the focus, the resulting
FocusIn events contain the timestamp used in the call. If the server automatically changes
focus because the focus window becomes unviewable, the last-focus-change time is not affected,
so the resulting FocusIn events contain the timestamp of the last successful
SetInputFocus call. Symmetry arguments strongly suggest making a similar change to
FocusOut events, though we can’t think of an example to justify it.

The window manager, which is already monitoring FocusIn events, would maintain a focus
timestamp for each top-level window. Each time the window manager receives a FocusIn
event on some window F, it copies the event timestamp into the focus timestamp for F. When the
window manager reassigns focus because a client unmaps what the window manager believes is
the current focus window, it uses the relatively old focus timestamp from the window being
unmapped. This SetInputFocus call succeeds only if another client has not already changed
input focus to another window, because the server accepts SetInputFocus requests with
timestamps matching the last focus-change time.

Figure 3-14 shows how this works. If we redraw this figure so that the window manager’s
SetInputFocus arrives first, focus still ends up in the desired window F. Client F’s
SetInputFocus request will succeed, because its request will have a later timestamp than the
window manager’s timestamp U.

Window managerClient U Server

Left button down
(in window U)

Unmap window U

Unmap window
UnmapNotify

Left button down
(in window F)

SetInputFocus
(to window F)
(with button time)

Change focus
(to window F)
FocusIn

Ignore request

Client F

SetInputFocus
(to window M)
(with U’s time)

Record window F
as current focus,
record F’s time

Figure 3-14: Timestamps solve the unmap focus race

Note that colormaps are subject to the same race conditions, and that these races can be
solved by generating a timestamp for ColormapNotify events, assuming that
InstallColormap takes a timestamp. Again, we believe that a protocol change offers a

20

more uniform model than a convention in the ICCCM.

Recommendation: The events FocusIn, FocusOut, and ColormapNotify should
contain server-generated timestamps. In all cases the timestamp values should be the
timestamp recorded when the resource was last set explicitly. The server should issue
FocusIn events whenever the last-focus-change time is modified, even if the focus window
remains the same. Similarly, additional ColormapNotify events must be issued when the
timestamp of a colormap is advanced.

3.6. Other problems solved with redirection
The examples above show why all resource management requests, and most window

management requests, should be redirectable. We now argue that the remaining window
management requests---UnmapWindow, DestroyWindow, and ReparentWindow---should
also be redirectable.

Currently none of these window management requests are redirectable, so window managers
find out about the changed status of a window only after the fact. In the meantime, the window
manager may have issued requests to the window that can no longer be applied, since no
requests apply to a non-existent window, and many requests don’t apply to unviewable windows.
These operations eventually return an error to the window manager. A window manager might
carefully record each request and why it could fail. It might verify that the appropriate unmap and
destroy notifications have been received after issuing the request and before receiving the error.
More likely, it will supply an error handler that blithely ignores all errors. While this last strategy
usually works, it means that potentially serious bugs in window managers are likely to be masked.

Further, a client program might try to destroy, reparent, or unmap one of the windows owned
by the window manager itself. If the client uses QueryTree to get information about the
window hierarchy, and due to a programming error manipulates a window that the client doesn’t
own, the window manager can get very confused. It would be better to give the window manager
the ability to monitor such requests before they are executed, rather than have it try to recover
afterwards.

Finally, if SetInputFocus is made redirectable, race conditions can still arise unless
UnmapWindow, DestroyWindow, and ReparentWindow are redirectable also. Let us
return to the input focus race of the previous section, but with a window manager that redirects
SetInputFocus requests to track changes in keyboard focus. This works fine as long as
focus is changed explicitly by SetInputFocus requests. However, if an application unmaps,
destroys, or reparents the current focus window, focus automatically reverts to the parent
window, PointerRoot, or None. Since the server changes focus as a side-effect of
unmapping, there is no explicit SetInputFocus request to allow the window manager to
maintain control of focus.

If SetInputFocus were redirectable, the server could redirect the implicit focus change that
may happen on UnmapWindow, DestroyWindow, and ReparentWindow, but this solution
is extremely complex to implement and works only if redirection is synchronous. It is better to
make the remaining window management requests redirectable.

It might seem odd to allow DestroyWindow to be redirected. After all, frequently a client

21

destroys its top-level window, then immediately terminates, breaking its connection to the X
server. The connection loss causes the X server to recover the client’s resources, including all of
its windows. We see this situation as no different from any other in which a client breaks its
connection, either deliberately or because of a programming error. A window manager must
always be prepared to deal with this condition. DestroyWindow should be redirectable to
simplify error handling in window managers, to prevent clients from destroying frame windows,
and to avoid a tractable class of race conditions. (In this paper we do not propose any solutions
to race conditions caused by connection loss.)

Recommendation: All window and resource management requests should be redirectable. In
particular, UnmapWindow, DestroyWindow, and ReparentWindow should be made
redirectable, and the corresponding redirection events UnmapRequest, DestroyRequest,
and ReparentRequest should be added.

4. Tracking Window Attributes
Besides race conditions, there are two other problems that pose difficulties for window

managers: some window attributes are not readable, and there is no notification mechanism for
tracking changes to most window attributes.

4.1. Unreadable window attributes
Window managers that want to match their decorations (frames and icons) to the border or

background of a client window cannot do so. The GetWindowAttributes request returns
only a subset of the attributes that can be set with CreateWindow or
SetWindowAttributes. In particular, the window manager has no way of determining a
window’s background color, background pixmap, border color, border pixmap, or cursor.

We know of no reason why the background and border pixels are not returned. Given these
pixels, the window manager could match decorations to the window in most cases. Using
ColormapNotify events (or redirection on InstallColormap), it could keep the
decoration colormap consistent with the client window’s colormap. And the window manager
could use the client’s colormap to determine exact RGB values for these pixels when coloring
icons.

There are good reasons why the protocol doesn’t return pixmap and cursor window attributes.
The server may not be able to return the original pixmap handle, since the client may have
already destroyed it. The server could return a copy of the pixmap, but this would waste memory.
The server might sometimes do one or the other, but that leaves the client not knowing whether
the resource should be freed.

A simple solution would be to permit CreateWindow and SetWindowAttributes calls
to set the borders and backgrounds of one window to match those of another window. Note that
we might want the border of one window to match the background of another window, and vice-
versa. If the source window’s background is ParentRelative, the server uses the
background of the source window’s parent.

This solution has none of the sharing problems described above. Even better, the
CreateWindow request directly specifies the window to inherit attributes from, so the window

22

manager can avoid making a round-trip call to GetWindowAttributes to fetch the
background or border.

Similar arguments extend to cursors. If the source cursor is None, the server uses the
parent’s cursor.

Recommendation: GetWindowAttributes should return a window’s border and
background color. CreateWindow and SetWindowAttributes should be extended to
allow inheritance of border, background, and cursor from another window. It should be possible
to cross-inherit border to background and background to border.

4.2. Untrackable window attributes
There are some window attributes whose values a window manager might want to track, but

the X protocol provides no notification mechanism for tracking them. In the example above, the
window manager may want to change decoration colors if a window changes its background
color.

A more serious problem occurs in tracking changes to the save-under attribute of a pop-up
dialog box window. Most applications set the value of the save-under field before mapping the
pop-up window, and then never change it, so a reparenting window manager can propagate
save-under when it creates its frame window. However, some applications might pop up a dialog
box in different locations, and set save-under based on the difficulty of painting the underlying
windows. In such cases the window manager must reliably track changes in the save-under
attribute.

The most serious, albeit contrived, problem stems from the inability to track the override-
redirect attribute, which if True prohibits requests from being redirected to the window manager.
Suppose a client creates a window with override-redirect False, and a reparenting window
manager decorates the window. The client maps the window, changes override-redirect to
True, and resizes the window. The resize request is not redirected to the window manager,
which consequently does not find out about the resize until the server sends a
ConfigureNotify event.

To track such attributes, the window manager could poll windows occasionally, but this seems
a poor solution even aside from efficiency considerations. For attributes like background pixmap,
there is no way to poll. For the save-under attribute, the window manager can poll and risk
mapping the window with the wrong value, or it can call GetAttributes before it maps the
window, increasing the time it takes to pop up the window. For the override-redirect attribute, the
problem described above remains if the client changes override-redirect to True and resizes the
window between polls.

The protocol provides two mechanisms to track geometry-related changes to a window: a
window manager can redirect ConfigureWindow, or can receive ConfigureNotify
events. Both mechanisms should be extended by making SetWindowAttributes a
redirectable request, and by adding an AttributeNotify event.

Again, backgrounds of ParentRelative and cursors of None require special attention.
Any time the server changes a window’s background, it should (recursively) propagate redirection

23

or notification of this change to any children with a background of ParentRelative. When
the server changes a window’s cursor, it should propagate redirection or notification to any
children with a cursor of None. Note that redirection in this case does not prevent the change to
the parent from taking place, but serves more as a notification mechanism. This is stretching the
notion of redirection a bit, but it seems better than having to ask for both redirection and
notification in order to track background and cursor changes.

Recommendation: SetWindowAttributes should be a redirectable request, and the
corresponding SetAttributesRequest event should be added. If the window manager
asks for redirection of SetWindowAttributes, the server redirects any request that changes
the override-redirect attribute, regardless of the current state of the override-redirect attribute. An
AttributeNotify event, analogous to other notify events, should be added to the protocol.

5. Window Visibility
Clients generally use windows in one of two ways. Most windows are like sleeping

dogs---when the user pokes them, they jump up, roll over, and after a bit of frenzied activity, play
dead. Real-time windows display data that are constantly or periodically updated; simple
examples are clocks and graphs of machine loads. Here we are concerned with real-time
windows whose contents are expensive to compute or display, like frequency analyzers, video
movies, and image processing programs.

To reduce load on the host machine and the server, real-time windows want to avoid painting
bits that are not visible to the user. If the entire window is invisible, the application can probably
avoid some computation and all painting. If the window is partially visible, the application may be
able to avoid some of its computation and painting calls. Such an application needs accurate
information about what regions of the window, if any, are visible.

The X protocol fails in two respects: a window can become invisible without generating any
notification to the client, and in the cases where the client does receive notification there is too
little information.

5.1. VisibilityNotify for unviewable windows
The X protocol carefully defines the terms viewable and visible. A window is viewable if it and

all of its ancestors are mapped. A window is visible if some portion is actually visible to a user. A
window must be viewable to be visible. However, a viewable window might not be visible---it can
be completely obscured by windows above it.

Clients ask for VisibilityNotify events to find out about changes in the visibility of a
window. VisibilityNotify specifies whether the window is fully visible, fully obscured, or
partially visible. The server generates a VisibilityNotify event when a window goes from
not visible to partially or fully visible. It also generates VisibilityNotify when a window
goes from unviewable to viewable, even if the window remains not visible. However, the server
doesn’t generate VisibilityNotify when a window goes from viewable (and possibly
visible) to unviewable (and definitely not visible).

If a client knows that a real-time window is viewable, it can combine this information with
VisibilityNotify events to determine the true visibility of the window. To know whether a

24

window is viewable, a client must know if the window and all of its ancestors are mapped. The
client code responsible for the window is usually a module that has no direct knowledge about the
window’s ancestors; the module must query the server to discover the window’s lineage, then
look for UnmapNotify events on the window and all of its ancestors. Further, since
reparenting window managers can change the shape of the window tree, this module must
periodically poll the server to see if the window hierarchy has changed. Rather than burden
clients with this task, the server should provide viewability information in the
VisibilityNotify event.

Recommendation: VisibilityNotify events provide a detail of Unobscured,
PartiallyObscured, or FullyObscured to describe the state of a window that is
viewable. This detail should be extended with an additional state, Unviewable, which is
generated whenever the window changes state from viewable (regardless of visibility) to
unviewable.

5.2. Partially obscured windows
The above extension to VisibilityNotify allows clients to reduce computation if the

window is not visible at all. But some real-time clients would like to know exactly which regions of
a window are visible in order to further optimize performance. This information is difficult to come
by. The server provides no notification when new portions of a partially obscured window
become obscured, and it provides incomplete notification when new portions become
unobscured.

A client can determine which portions of a real-time window are visible by occasionally polling
the server for the window tree and computing window clipping itself. This is cumbersome, but
should suffice for discovering that portions of window have become obscured since the last poll.
Since the window needs this information only for efficiency reasons, prompt notification is not
essential.

On the other hand, clients want to paint newly visible portions of a window promptly. The
protocol does not offer a means to do this with acceptable performance. Although polling would
allow a client to discover visibility changes, polling often enough to provide good response would
be prohibitively expensive. The client might try to use Expose events, but Expose events
aren’t generated for windows with backing store. Turning off backing store doesn’t work either
because the protocol permits the server to provide backing store even to clients that don’t ask for
it. Besides, clients for whom painting is computationally expensive are exactly those clients that
most benefit from backing store.

Recommendations: A new event mask BackingExposure should be added. If
BackingExposure is selected on a window, the server generates Expose events even if the
window has backing store. The Expose event should include a new field backing-expose
which is True if the region described by the event is repainted from backing store. A new event
mask Unexposure, and the corresponding event Unexpose should be added. If
Unexposure is selected on a window, the server generates a series of Unexpose events
(similar in structure and semantics to Expose events) whenever a portion of the window
becomes obscured.

25

6. Mouse Tracking
Simply displaying the mouse cursor is the server’s problem. In many cases, hardware makes

this job trivial. However, clients frequently provide specialized mouse-tracking feedback:
rubberband lines and boxes show the size of a line or rectangle to be created, crosshairs indicate
mouse position on rulers surrounding the window, inverted or underlined text shows the extent of
a text selection.

Effective mouse tracking should satisfy two possibly conflicting goals: the display should track
changes in mouse position as quickly as possible, and the client should not create an excessive
load on the network or on the client and server machines. Further, the client can make no
assumptions about the relative efficiency of the server’s painting operations and the
communication link to the server. Painting may be insignificant compared to the time for a round
trip or the time between two mouse motion events, or it may be much larger than these times.
We assume it is trivial for the client to issue painting requests in response to MotionNotify
events.

In the sections below we analyze three methods that X clients use for mouse tracking, and
point out problems with each. We finally suggest a protocol change that would allow efficient,
correct, and reasonably interactive mouse tracking.

We analyze interactiveness by computing mouse-update times. These are the minimum and
maximum times that can elapse between mouse movement and the completion of painting
requests to reflect this or a later position of the mouse. The mouse-update times are expressed

6in terms of three parameters: M, the mouse-sampling period; RT, the average round-trip time
between server and client; and P, the painting time to update the tracking feedback. Smaller
maximum mouse-update times mean more interactive mouse feedback; smaller differences
between the minimum and maximum time mean less variability in mouse feedback. Correctness
means that for any combination of M, RT, and P, the maximum mouse-update time is a finite
number. Efficiency means that if the mouse isn’t moving, the server and client aren’t wasting
cycles and network bandwidth talking about it.

6.1. Asynchronous tracking
The simplest way for a client to track the mouse is to ask for MotionNotify events, and to

issue painting requests in response to each motion event. This works quite well if the painting
time is small. The minimum mouse-update time is one round-trip time plus one painting time (1
RT + 1 P). The maximum mouse-update time is one mouse-sampling time plus one round-trip
time plus one painting time (1 M + 1 RT + 1 P). This is the best we can hope to do.

However, the computation above of the maximum mouse-update time is flawed if the painting
time is greater than the mouse-sampling time. If the user moves the mouse continually, then the
client generates painting requests faster than the server can paint them. The mouse tracking
feedback falls farther and farther behind the mouse. Thus, if P > M, the maximum mouse-update
time is unbounded.

6The protocol specifies no minimum granularity for the mouse-sampling period, nor does it require that the mouse be
sampled at regular intervals. In practice, servers sample the mouse at regular intervals ranging from about 1/100 to 1/60
of a second.

26

Some clients compress MotionNotify events in an attempt to avoid this and other tracking
7problems. If a client sees more than one motion event in its input queue, it discards all but the

last one and generates a single painting update. But the protocol doesn’t specify what to do first
if a server has events to deliver to a client, and at the same time has painting requests
outstanding from the same client. Giving priority to painting lets real-time clients indefinitely lock
out their own events, so servers invariably give priority to delivering events. As a result, clients
often see only one MotionNotify event at a time, rendering client-side compression useless.

Further, any specification of priorities, no matter how complex, will always be susceptible either
to locking out events to a real-time client, or to lagging increasingly far behind the mouse. Some
synchronization between motion events and paint requests is therefore necessary.

Synchronization need not require a round trip. For example, a mouse-tracking marker request
could be added to the protocol. A client sends this request immediately after it issues the painting
requests to update mouse tracking feedback. The server always sends MotionNotify events
immediately if there are no mouse-tracking markers in the queue. Otherwise the server
processes requests until there are no mouse-tracking markers in its input queue, and then sends
all queued events out at once. This solution requires the server to look ahead for markers in its
incoming request stream, which no other protocol request requires.

6.2. Synchronous polling
In another popular tracking method, the client polls the server for the mouse position using

QueryPointer, then paints. Repeat ad infinitum. The minimum mouse-update time is 1 RT +
1 P. The maximum time occurs when the mouse moves immediately after the server sends the
results of a QueryPointer. The new (or later) mouse position won’t be painted until the client
receives the results from QueryPointer, issues painting requests, queries the mouse position
again, and issues painting requests for that position. This gives a theoretical maximum mouse-
update time of 2 RT + 2 P. Since most servers don’t actually poll the mouse in QueryPointer,
but use the slightly stale position from the last mouse-sampling time, the maximum time is 1 M +
2 RT + 2 P.

If the round-trip and painting times are small enough, synchronous polling becomes busy
waiting. The client polls the server multiple times between mouse-sampling times, getting the
same mouse position back each time. The client and server saturate all available cycles, and
may also consume a substantial portion of the network bandwidth. Polling is less efficient and
usually slower than asynchronous tracking. Its sole advantage is that it has a bounded mouse-
update time, so it never falls farther and farther behind the mouse.

6.3. PointerMotionHint tracking
The X11 protocol allows clients to ask the server to filter MotionNotify events by selecting

for motion events with PointerMotionHint. If PointerMotionHint is selected, the
protocol suggests that the server should deliver a single MotionNotify event under certain
conditions. The application can then use the QueryPointer request to get the current mouse

7In fact, the Xtk toolkit compresses MotionNotify events for clients that request it.

27

position and tell the server to send another MotionNotify event when the conditions are
again satisfied.

While it is intended to help with mouse tracking, PointerMotionHint is unusable in
practice. In particular:

1. PointerMotionHint is only a hint and may be ignored: the server is not
required to filter any MotionNotify events. In this case, the busy wait problem
returns.

2. Even if a server implements PointerMotionHint filtering, the protocol does
not specify exactly when the server should send a MotionNotify event after the
QueryPointer request. The server is free to send a MotionNotify event
immediately, which causes busy waiting. Alternatively, the server is free to delay
reporting that the mouse has moved, which causes tracking to stop even though the
user is moving the mouse. This is even worse than the unbounded asynchronous
case above, because the tracking feedback may never catch up with the mouse
position after the user stops moving the mouse.

3. It is difficult to process mouse positions in the correct context using
PointerMotionHint. Since QueryPointer is a reply request, the
coordinates it reports are seen as a reply value and not a part of the ordinary event
stream. Thus, it is easy for the client to inadvertently ignore intervening key and
button events.

6.4. Lazy polling
We now present a better way of updating mouse tracking which we call lazy polling. Lazy

polling provides the capabilities for which PointerMotionHint was intended, but is easier to
use and implement, and results in better minimum mouse-update times.

Lazy polling requires a new event-selection mask, PointerMotionAllow, and a new
protocol request, AllowMotion, which takes a window and a position as arguments. If
PointerMotionAllow is selected, the server sends at most one MotionNotify event
after receiving an AllowMotion request. If the mouse is no longer at the specified position,
the server immediately sends a MotionNotify event reporting the current position. If the
mouse is still at the specified position, the server sends a MotionNotify event as soon as the
mouse moves.

In this way, applications can simply accept MotionNotify events, call AllowMotion to
allow the next interesting MotionNotify event, and update the tracking feedback.
(Requesting AllowMotion before updating the feedback improves average response time over
networks where RT is relatively large.) The minimum mouse-update time is 1 RT + 1 P; the
maximum mouse-update time is 1 M + 2 RT + 2 P.

Recommendation: PointerMotionHint is so loosely specified and difficult to use
correctly that we recommend eliminating it from the protocol. The protocol should replace the
selection mask PointerMotionHint with PointerMotionAllow. A new request,
AllowMotion, sends one MotionNotify event when the mouse has moved to a position
different from the one specified.

28

7. Pop-up and Redisplay Efficiency
The X protocol’s network-transparent client-server model is less efficient than a direct-

procedure-call window system, such as SunView [8] or Microsoft Windows [10]. In particular,
1. Requests and events must be packaged and unpackaged.

2. Request and event packets must be moved across address spaces or across a
network.

3. A context switch is required to move between executing client code and server
code, if they are running on the same machine.

Most of the time, clients are sending a stream of requests and receiving a stream of events,
allowing some costs due to the second and third points above to be amortized over large packets.
The remaining overhead usually isn’t a significant problem: servers spend more time painting
than sending events and receiving requests, and local-area networks provide adequate transport.

However, synchronous round trips, which are required in window management, cannot
amortize the above costs and so are inherently more expensive. Furthermore, in situations
requiring fast reponse, such as popping up a menu, network bandwidth and latency are often
inadequate. This is particularly a problem when X is used outside of its design parameters, for
example using phone lines in place of a network. Just sending the Expose events over a phone
line for a typical pop-up dialog box can take several seconds.

7.1. Popping up menus
Menus are the simplest pop-up: they do not set input focus, and they are invariably created

with override-redirect True, so the window manager never sees them. Popping up a menu
requires two round-trip times, plus processing of several Expose events: the server sends a
ButtonPress event, and the client responds with a MapWindow request. Then the server
generates a series of Expose events---one for each visible subwindow in the menu---and the
client responds with painting requests for each window.

Waiting for the Expose events is inefficient; clients could start painting immediately after
issuing the map request and ignore the forthcoming Expose events. However, this introduces
added complexity if the clients want to avoid repainting the menu when they finally receive the
Expose events generated by the map request. Furthermore, the cost of generating, packaging,
transporting, and unpackaging the Expose events still remains, even if the client chooses to
ignore them.

Our solution is to parameterize MapWindow and MapSubwindow requests to indicate
whether the server should generate Expose events caused by the map. This completely solves
the performance problems for override-redirect windows.

Recommendation: MapWindow and MapSubwindows should take an exposures
parameter as the ClearArea request does. If exposures is False, the requests generate no
Expose events.

29

7.2. Popping up dialog boxes
Dialog boxes are more complex than menus. Many dialog boxes are created with override-

redirect False, so a window manager may redirect the MapWindow request. Dialog boxes
often set the input focus to some window in the dialog box; if SetInputFocus is made
redirectable, a window manager may redirect it as well.

Asynchronous redirection doesn’t just complicate clients; it makes them inefficient as well.
Because a client must operate correctly under a redirecting window manager, it cannot use the
same shortcuts for dialog boxes that it can for menus. It must instead wait for various notification
events before issuing certain requests. The possibility of redirection adds one round trip; the
actual use of redirection by a window manager adds another. Figure 7-1 illustrates both
scenarios: dotted lines show the extra round trip if the client runs under a redirecting window
manager.

Window managerClient Server

Redirect request

Map dialog box

Reparent
Map client
Map parent

Map windows
MapNotify
Expose

Button down
(synchronous grab)

SetInputFocus
AllowEvents

Paint contents
Change focus
send queued events

Paint dialog box

Figure 7-1: Popping up a dialog box slowly

Efficiency improves considerably if redirection is synchronous and the client can map a window
without generating Expose events. The client responds to the ButtonPress event by issuing
MapWindow, SetInputFocus, AllowEvents, and painting requests. This reduces dialog
box pop-up to one round-trip time if the window manager is non-redirecting, and to two round-trip
times if the window manager redirects MapWindow, as shown in figure 7-2.

Even in the presence of synchronous redirection, the decision to generate painting requests
immediately requires some justification, because a redirecting window manager might resize the
dialog box before mapping it, or might not map the dialog box as the topmost window. Waiting for
Expose events might appear to be better than writing to a window that could be the wrong size
or partially obscured. In practice, window managers don’t change the geometry of dialog boxes;
even if they did, painting immediately would work well if the client uses window and bit gravity

30

Window managerClient Server

Map window(s)

Change focus
Send queued events
Paint

Map dialog box
SetInputFocus
AllowEvents
Paint contents

Button down
(synchronous grab)

Redirect request
(Queue requests)

Reparent
Map client
Map parent
AllowRequests

Figure 7-2: Popping up a dialog box quickly

sensibly.

If a window manager uses synchronous redirection for MapWindow, it might redirect
SetInputFocus as well (if SetInputFocus is made redirectable). In this case, popping up
the dialog box with synchronous redirection requires three round trips, the same as the existing
asynchronous redirection. As soon as the window manager calls AllowRequests after
mapping the dialog box, the server redirects SetInputFocus and again freezes processing of
client requests.

We can remove the extra round trip entirely by slightly altering the definition of synchronous
redirection. Redirection should not freeze all subsequent client requests; it should freeze the
client only upon receiving a request that is not redirected, or a request that is redirected to a
different destination. The server increments a client redirection counter each time it redirects an
event, and decrements the counter each time it receives an AllowRequests call for the client.
Normal request processing in the client does not resume until the redirection counter reaches 0.

This way, the server redirects MapWindow, then immediately redirects SetInputFocus
without waiting for the window manager to call AllowRequests. The server resumes client
request processing upon receiving two AllowRequests calls---one for the MapWindow, and
one for the SetInputFocus.

This redefinition of synchronous redirection maintains the guarantee that client requests are
not reordered. However, window managers must deal with the possibility of receiving a second
redirected request before receiving event notification from their response to the first redirected
request. In the example above, the window manager receives the redirected SetInputFocus
request before any MapNotify events. We are willing to trade a small increase in window
manager complexity for faster pop-ups.

Recommendation: When handling synchronous redirection, the server should freeze client

31

request processing when it encounters a request that is not redirected or a request that is
redirected to a different destination. The server should count the number of requests redirected
before freezing, and should resume normal client event processing when it receives a
corresponding number of AllowEvents requests.

7.3. Expose event grabbing
Whenever a large section of a window gets exposed, all of the subwindows inside it get

Expose events. For windows with complex internal structure, the number of such Expose
events could be very large. Moreover, for many applications, the information contained in the
Expose events could be computed by the client from a single Expose event on the parent.

For example, the Xtk toolkit shadows window positions and sizes in order to speed up the
negotiations for geometry layout between parent windows and their children. Xtk has enough
information to select for Expose events on the top-level client window, and then internally
generate calls to the proper subwindow exposure procedures. However, there is no way to
request that Expose events on children be coalesced and reported with respect to an ancestor.

Grabs provide a model for extending Expose semantics. Besides using grabs for mouse-
ahead and type-ahead, a client can use them to alter the normal flow of event processing in the
server. The server normally processes a mouse or keyboard event in a bottom-up fashion; the
lowest containing window that has expressed interest gets the event. Grabs use top-down
processing, and thus let a higher-level window intercept the event. The grabbing client can
swallow the event completely, or can replay the event to the next lower level in the window
hierarchy.

If a toolkit could grab Expose events on the top-level window of a client, then it could
distribute this information to the proper exposure procedures directly. At worst, the toolkit would
perform approximately the same amount of work to call exposure procedures directly as the
server performs in generating the information contained in the Expose events. In any case,
Expose grabs eliminate the time to package, send, and unpackage tens or hundreds of events.
This would be particularly useful over serial links.

Recommendation: Grabs should be extended to Expose events, and servers should
coalesce all exposures on subwindows into Expose events on the grabbed window. If
Unexpose events are added, grabs should be extended to these events as well.

8. Exceptional Conditions
The protocol isn’t helpful about getting users out of bad situations. The most drastic errors lock

up the server entirely, and regaining control requires using another machine or rebooting. Less
serious, though still annoying, problems occur when users try to abort painting requests; an
application can offer better abort response only at the risk of slowing down the normal case.

8.1. Things that go grab in the night
If an X11 client issues a grab using GrabPointer, GrabKeyboard, or GrabServer and

fails to release the grab, all other clients, including the window manager, are locked out. If a
client establishes a synchronous passive grab using GrabButton or GrabKey and fails to call

32

AllowEvents, the grab technically ends when the button or key is released, but the server
never interprets and dispatches user events. In both cases, the only way to recover control of the
display is to use another machine to kill the offending program, or to reboot.

A client might fail to release a grab due to incorrect grabbing code. For example, the client
may wait to release a grab until it receives a certain event, but there are situations in which the
server never generates the event. More likely, a client program has a bug unrelated to the grab,
and the user runs the client under a debugger. In trying to elicit various behaviors, the user may
click in a client window that establishes a synchronous passive grab while the debugger has the
client paused. Mouse and keyboard event processing freezes, and the user loses control.

The situation in the Sprite operating system [5] is even worse. When a program crashes,
Sprite doesn’t dump core, but leaves the program halted under a special debugging process.
This makes much more context available than post-mortem debuggers provide---for example, the
user can see the contents of the X windows that the program owns. Of course, these windows
show no indication that the program behind them is halted. If the user clicks in a dead window
that has registered a passive grab, everything freezes.

One solution is to establish a maximum time that a client can hold a grab. If the client doesn’t
release the grab or allow events in that time, then the server automatically breaks the grab. But if
a developer uses a work machine and a test machine to debug code that uses grabs, he will be
frustrated if the server on the test machine takes away the grab he is trying to debug. At the very
least, a grab timeout should be a settable resource like the screen saver timeout.

A different solution is to allow an escape mechanism. A client (which would usually be the
window manager) should be able to register a key combination that breaks all grabs, thaws all
frozen devices, and resets focus to PointerRoot. Using this solution, the user neither has to
wait for the timeout period nor change the timeout duration when cross-machine debugging. This
solution makes it possible to debug most errors with grabs on a single workstation; we hope that
this will help get the bugs out, so that only application developers will ever need to use this
facility.

Recommendation: A new protocol request, SetBreakGrabs, allows a client to register a
key combination which is very difficult to type. When typed, this combination breaks all existing
grabs and unfreezes the server.

8.2. Aborting queued requests
Some terminal-based programs are quite reactive to user input; the emacs text editor is

probably the best-known example. When the user issues commands to move to a new page,
emacs stops sending characters from the current page, and starts sending the new page as soon
as possible.

X clients cannot efficiently provide similar functionality. Requests like PolySegment or
PolyArc can take a long time to paint if the graphics context specifies a wide line. Since these
requests take a relatively small amount of data, the server can queue up a large number of them.
Even if the client program stops sending painting requests as soon as the user indicates lack of
interest in the current view, the queued requests continue to execute for several seconds.

33

To improve abort response, a client can break most complex painting commands into multiple
smaller requests, and synchronize with the server after each request. Synchronization requires a
round trip, which decreases performance. Achieving instantaneous abort response can easily
double the time it takes to paint the entire window; application writers must settle for some
compromise between responsiveness and efficiency.

We offer no solutions to this problem. A separate channel for communicating with the server
would help, but this would be a large change with ramifications we are unprepared to explore.
We note that such a channel could also be used to synchronize the asynchronous mouse
tracking case without requiring the server to look ahead in the normal communication channel.

9. Conclusions
This paper provides comprehensive descriptions of the problems that we see in the X protocol.

Its length should not be taken as an indictment of the X protocol, for in fact the protocol is
extremely well designed. Some of the problems we present result from the overwhelming
success of X11: it is being used in situations the designers never envisioned. Many of the
performance problems could not have been anticipated, and will decrease in importance as faster
X servers and hardware become available. Some of the problems can be coded around. Finally,
as we sifted through possible solutions to problems, we were constantly impressed at the number
of subtleties in the design that made our job easier.

In evaluating solutions, we focussed mostly on technical issues rather than political
considerations; our solutions often look like proposals for X12 rather than fixups for X11. At first
glance, this approach differs markedly from the philosophy behind the Inter-Client Communication
Conventions Manual. The ICCCM doesn’t change the X protocol, avoiding any need to change
servers. It does prescribe a large set of conventions that clients must obey in order to work
peacefully with one another. Complying with these prescriptions has required reprogramming
existing clients and window managers, and many of the required changes have not been made
correctly. Thus, upon closer inspection, changing the protocol might have provided a more
effective means of avoiding races and imposing consistent focus and colormap management
styles. An ICCCM would still be needed in the areas of selections and window manager hints.

Most of our protocol changes can be introduced in upward-compatible ways by offering new
servers and window managers first, and then reprogramming or relinking clients at a more
leisurely pace. For example, if a server sees the current 8-byte InstallColormap request, it
assumes a timestamp of CurrentTime. But the server could also accept the new 12-byte
InstallColormap request, which contains an explicit timestamp. Similarly, making
redirection synchronous requires only that the server and window managers change
simultaneously. Unmodified clients still work, and can be reprogrammed later to take advantage
of the performance gains that synchronous redirection makes possible. Note also that
synchronous redirection would allow protocol requests and events to be clearly separated into
‘‘normal’’ and ‘‘window manager’’ sections, and would eliminate the subtle scattered references to
possible behavior of requests when override-redirect is False.

In some sense, this paper is too late---people writing X11 clients don’t want to rewrite code,
regardless of the benefits. Unfortunately, many of these problems did not arise until
programmers tried to accomplish various tasks in X. The very popularity that has led to the

34

discovery of these problems may also prevent the adoption of reasonable solutions. At the very
least, we hope the reader has gained an understanding of the problems inherent to the X11
protocol.

10. Acknowledgements
Robert Scheifler and Jim Gettys provided extensive clarification of fine points in the protocol,

and were quite open about mistakes and omissions in the protocol.

References

1. Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-Wesley,
Reading, Massachusetts, 1985.

2. Apple Computer, Inc.. Inside Macintosh, Volumes I-III. Addison-Wesley, Reading,
Massachusetts, 1985.

3. James Gosling, David S.H.Rosenthal, and Michelle Arden. The NeWS Book: An Introduction
to the Networked Extensible Window System. Springer-Verlag, 1989.

4. Joel McCormack, Paul Asente, Ralph Swick. X Toolkit Library - C Language Interface. X
Version 11 Release 3 edition, Software Distribution Center, Massachusetts Institute of
Technology, Cambridge, MA, 1988.

5. John Ousterhout. Private communication.

6. International Standards ISO/IEC 9592-1:1988(E). Programmer’s Hierarchical Interactive
Graphics System (PHIGS). International Standards Organization, Geneva, 1988.

7. Robert W. Scheifler, James Gettys. X Window System: The Complete Reference to Xlib,
Xprotocol, ICCCM, XLFD. Digital Press, 1990.

8. Sun Microsystems, Inc. SunView Programmer’s Guide. 4.1 edition, Sun Microsystems, Inc.,
Mountain View, California, 1990.

9. Tom Thompson. "The Next Step". Byte Magazine (March 1989).

10. Microsoft Corp. Microsoft Windows Programmer’s Reference. Redmond, Washington, 1990.

35

Table of Contents
1. Introduction 1
2. Coordinate Representation 2

2.1. Signed positions vs. unsigned dimensions 2
2.2. Window coordinates and borders 4
2.3. Window sizes must be positive 5

3. Race Conditions 5
3.1. Races within a client 6
3.2. Races between two clients 9
3.3. Client-side races with the window manager 11
3.4. Window manager races solved with redirection 15
3.5. Window manager races solved with timestamps 18
3.6. Other problems solved with redirection 21

4. Tracking Window Attributes 22
4.1. Unreadable window attributes 22
4.2. Untrackable window attributes 23

5. Window Visibility 24
5.1. VisibilityNotify for unviewable windows 24
5.2. Partially obscured windows 25

6. Mouse Tracking 26
6.1. Asynchronous tracking 26
6.2. Synchronous polling 27
6.3. PointerMotionHint tracking 27
6.4. Lazy polling 28

7. Pop-up and Redisplay Efficiency 29
7.1. Popping up menus 29
7.2. Popping up dialog boxes 30
7.3. Expose event grabbing 32

8. Exceptional Conditions 32
8.1. Things that go grab in the night 32
8.2. Aborting queued requests 33

9. Conclusions 34
10. Acknowledgements 35
References 35

i

List of Figures
Figure 2-1: The X coordinate system: definition vs. reality 3
Figure 3-1: Pop-up menu race 6
Figure 3-2: A synchronous grab solves the pop-up menu race 7
Figure 3-3: A synchronous grab solves the pop-up dialog box race 8
Figure 3-4: Input focus race between clients 10
Figure 3-5: Timestamps solve the input focus race 11
Figure 3-6: The ultimate input focus race solution 12
Figure 3-7: Map window race 13
Figure 3-8: MapNotify solves the map window race 13
Figure 3-9: Synchronous redirection solves the map race 15
Figure 3-10: PointerRoot focus race 17
Figure 3-11: Redirection solves the PointerRoot focus race 17
Figure 3-12: Synchronous redirection completely solves the 18

PointerRoot focus race
Figure 3-13: Unmap focus race 19
Figure 3-14: Timestamps solve the unmap focus race 20
Figure 7-1: Popping up a dialog box slowly 30
Figure 7-2: Popping up a dialog box quickly 31

ii

